Portals and Complex Analysis

By finegeometer.
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Theory

Consider portal spaces in two dimensions, and restrict to those with a well-defined sense of distance
and direction. That is, those whose portals do not rotate or scale you.

Such spaces are exactly characterized by pairs (M, f), where M is a compact Riemann surface and f
is a meromorphic covector field.

M describes the points of the portal space, including portal boundaries and “points at infinity”. f
describes distances and directions; if you travel along the path «y : [0, 1] — M, your total
displacement is the integral f7 f(z)d=.

Any other covector field g can be interpreted as a gravitational field, since the conditions for
complex differentiability force it to be irrotational and divergence-free. The corresponding potential
is the negative real part of ¢’s integral, so if we want conservation of energy, we should require the
integral of g around any loop to be purely imaginary.

Examples

One Universe, No Portal
Let’s start simple, with the portal space (M, f) = (@, z = 1). This describes a universe without
portals, in the typical coordinate system. After all, the displacement from point 0 to point a is
a a . .
fo f(z)dz = fo dz = a, so a simply acts as a coordinate.

As for gravity, we have many choices. Some realistic; some less so.

Rightwards Gravity Downwards Gravity Point Mass

9(z) =1 g9(z) =1 g(z) = —1
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Repulsive Gravitational Source Gravitational Vortex Gravitational Dipole
(violates energy conservation)
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Two Universes, Infinite Portal

Okay, let’s try the next simplest possibility: (M, C) € (C, zZ = z). The displacement from point 0 to

point a is f; f(z)dz = foa zdz = %2

But that means points @ and —a correspond to the same physical location. In effect, we have two
connected universes.

But how are they connected?

Imaggne following the path ¢ - re®, as t ranges from 0 to 7. Our physical position is then given by
it . . .

(Te2 > 7"2—262”, so we're walking in a circle of radius g around the origin. But since re‘™ # re®,
we don’t end up where we started. Therefore, walking in a circle around the origin always takes you

from one universe to the other.

So there’s a portal boundary at the origin. And the portal surface must stretch all the way out to
infinity, since even a very large circle takes you to the other universe.
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Poles and Zeroes
It’s a bit annoying that the portal surface is infinite. Why did that happen?

This is a question about the nature of the portal space at infinity. Points at infinity correspond to
poles of f, so we should analyze the nature of these poles.



Annoyingly, in our examples, these poles are at z = oo. There’s such a thing as a “pole at infinity”,
but its definition seems designed specifically for scalar fields, not covector fields.

So we should change coordinates. Applying the transformation z % :C — C,and recalling how
covector fields transform, we have:

(E5) = (€20 28))

. C,z|—>1 o~ @,zl—)—z%

- (Coz2) = (Cozs —5

We see that the no-portal space has a second-order pole, while the space with a portal of infinite
length has a third-order pole.

In general, if f has an nth order pole, then walking in a large circle takes you through n — 1
different universes before you return to your starting point. (The n = 1 case looks like a universe
rolled into a cylinder.) So if you want to avoid infinite portals, you should aim for every pole to be
second-order.

In addition to looking at f’s poles, we should also look at its zeroes.

When f(a) is a pole of order n, for a # oo, the displacement f: f(z) dz has a zero of order n + 1. So
as z closely circles a, the coordinate of z makes n + 1 small circles around the coordinate of a. This
means zeroes of f denote portal boundaries, and the order of the zero tells you the nature of the
portal boundary.

If you know the portal structure you are aiming for, you have information about the poles and
zeroes of f, and the topology of M. This information nearly determines the pair (M, f), leaving
only a finite-dimensional parameter space of possibilities.

More Examples

Two Universes, Finite Portal

Suppose we want a finite-size portal between two otherwise disconnected universes. We compute:

« The topology of this space is a sphere, once the points at infinity are filled in. So choose M = C.

+ There are two points at infinity, one for each universe, and each is portal-free. So f will have two
second-order poles.

« There should be two portal boundaries. (You might have expected four: two for each side of the
portal. But since the portal connects the space, you’ve really listed two points twice each.) So f
should have two first-order zeroes.

« This is consistent with the Poincare-Hopf index theorem, which implies that the sum of the orders
of the zeroes (with poles counting negative) should be the negative Euler characteristic of M.

This is easy to achieve:

(M, f) = (C,ZH1—i)

22
Poles at 0 and oo; zeroes at —1 and 1.

Picking a simple gravitational field, g = z = 7, we get the following picture.
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But how would we calculate the gravitational field in coordinate terms? If we wanted to understand
how it grows at the portal boundary?

The coordinate position corresponding to z is computed as foz f(#')dz’ = z + 1. Inverting this:
z+-=w
z

22—wz4+1=0

w4+ Vw2 —4
2= —
2
So coordinate position w comes from z = 2&V1-—2 V;"Z_‘l, with the 4 choosing which universe we’re in.
We further compute:
dz 1 1 1
dw 4w f(z) T 1—22
B 1

So the gravitational field, in terms of the coordinate position w, is

1

B i
1_<wi¢2}m)2 g(w) =

1— <w:|:\/w2—4)2
2
Near a portal boundary, say w = 2 + ¢ with € < 1, this becomes:
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1—(14+2ye+0(e))
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2/ + O(¢)
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So as we approach the portal boundary, the field strength grows as the inverse square root of the
distance from the portal boundary. It’s unbounded, but the growth rate is slower than the field of a

point particle.

One Universe, Finite Portals

We’ll now try something harder: a portal between two parts of the same universe.
For the first time, we do not have M = C. Our portal space is topologically a torus, not a sphere.

Fortunately, complex toruses have a simple classification; they’re always the quotient of C by some
lattice. And we can take that lattice to be generated by 1 and 7, where 7 has positive imaginary part.

We have interesting topology! There are two independent ways to loop around the torus: add 1, and
add 7. And there are two independent ways to loop around the portal space: loop through the
portals, or circle around one end of the portal. Let’s say looping through the portals corresponds to
the 7 direction, while looping around a portal end corresponds to the 1 direction.

Then we want to choose f to be a covector field on the torus C/(1, 7), such that fol f(z)dz = 0, but
f(;r f(z)dz # 0. We also want a single pole of order two, and two zeroes of order one.

What function might have these properties? A Jacobi theta function comes close.
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Periodic in the 1 direction and quasiperiodic in the 7 direction, but it’s not quite right.
In(d(z+7;7)) = In(Id(z;7)) — (22 + 7)

Closer...

d d .
e In(d(z+7;7)) = Ep In(¥(z; 7)) — 2mi

There. That'll work for [ f(z) dz.



(M, f) = ((C/(l,T),z — (?—;111(19(2-}-7’;7’)))

This portal always teleports you by a distance of 2, vertically. The size and angle of the portal are
controlled by 7. To find a useful gravitational field, set g(z) = if(z) + C, where C is whatever
constant simultaneously makes fol g(z)dz and fOT g(z) dz be pure imaginary.
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Technical Aspects

How am I making these pictures?

We have a coordinate map [ f : M — C, and a potential map — [ g : M — C. For each pixel w on
the screen, we’d like to compute ( [ g) (( Ir )_1 (w)) But that’s awkward — I don’t want to invert a
theta function!

Instead, I start with a mesh, whose vertices’ are equipped with the M-points they correspond to. In
the vertex shader, I apply [ f to compute the corresponding physical coordinates. But I also pass the
M-point to Then the fragment shader, where I can simply apply [ g. No inverse functions needed!



As stated, the above works if the initial mesh is sufficiently fine. But if it’s coarse, the interpolated
M -point that the fragment shader gets isn’t quite accurate. Instead, I treat it as a good estimate of
(ff )_1 (w), and apply one iteration of the Newton-Raphson method to improve the accuracy.
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